Spectral Signature Generalization and Expansion Can Improve the Accuracy of Satellite Image Classification

نویسندگان

  • Alice G. Laborte
  • Aileen A. Maunahan
  • Robert J. Hijmans
چکیده

Conventional supervised classification of satellite images uses a single multi-band image and coincident ground observations to construct spectral signatures of land cover classes. We compared this approach with three alternatives that derive signatures from multiple images and time periods: (1) signature generalization: spectral signatures are derived from multiple images within one season, but perhaps from different years; (2) signature expansion: spectral signatures are created with data from images acquired during different seasons of the same year; and (3) combinations of expansion and generalization. Using data for northern Laos, we assessed the quality of these different signatures to (a) classify the images used to derive the signature, and (b) for use in temporal signature extension, i.e., applying a signature obtained from data of one or several years to images from other years. When applying signatures to the images they were derived from, signature expansion improved accuracy relative to the conventional method, and variability in accuracy declined markedly. In contrast, signature generalization did not improve classification. When applying signatures to images of other years (temporal extension), the conventional method, using a signature derived from a single image, resulted in very low classification accuracy. Signature expansion also performed poorly but multi-year signature generalization performed much better and this appears to be a promising approach in the temporal extension of spectral signatures for satellite image classification.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Micro-classification of orchards and agricultural croplands by applying object based image analysis and fuzzy algorithms for estimating the area under cultivation

Remote sensing technology is one of the most efficient and innovative technologies for agricultural land use/cover mapping. In this regard, the object-based Image Analysis (OBIA) is known as a new method of satellite image processing which integrates spatial and spectral information for satellite image process. This approach make use of spectral, environmental, physical and geometrical characte...

متن کامل

Land Cover Classification Using IRS-1D Data and a Decision Tree Classifier

Land cover is one of basic data layers in geographic information system for physical planning and environmentalmonitoring. Digital image classification is generally performed to produce land cover maps from remote sensing data,particularly for large areas. In the present study the multispectral image from IRS LISS-III image along with ancillary datasuch as vegetation indices, principal componen...

متن کامل

Studying Effectiveness of Landsat ETM+ Satellite Images Classification Methods in Identification of desert pavements (Case study: South of Semnan)

Extended abstract 1- Introduction The process of identifying landforms is a subject that has been researched by many researchers. All the definitions of geomorphology emphasize the study and identification of landforms. Understanding landforms and how they are distributed are some sort of essential requirements in applied geomorphology and other environmental sciences (Shayan et al., 2012). O...

متن کامل

3D Classification of Urban Features Based on Integration of Structural and Spectral Information from UAV Imagery

Three-dimensional classification of urban features is one of the important tools for urban management and the basis of many analyzes in photogrammetry and remote sensing. Therefore, it is applied in many applications such as planning, urban management and disaster management. In this study, dense point clouds extracted from dense image matching is applied for classification in urban areas. Appl...

متن کامل

Determination of Best Supervised Classification Algorithm for Land Use Maps using Satellite Images (Case Study: Baft, Kerman Province, Iran)

According to the fundamental goal of remote sensing technology, the image classification of desired sensors can be introduced as the most important part of satellite image interpretation. There exist various algorithms in relation to the supervised land use classification that the most pertinent one should be determined. Therefore, this study has been conducted to determine the best and most su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2010